tnfh.net
当前位置:首页 >> 泰勒公式展开 >>

泰勒公式展开

Cos函数的泰勒展开式: 泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够光滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。泰勒公式还...

著作权归作者所有。 商业转载请联系作者获得授权,非商业转载请注明出处。 作者:魏正阳 链接:http://www.zhihu.com/question/24244243/answer/59325626 来源:知乎 记住一个e^x,可以拆分为sin和cos。cos为奇数项,其中正负交错。sin为偶数项...

通常,需要观察求极限的函数的分子与分母,如果只需要展开分子,那应该不低于分母的最高次幂。 反之亦然。 如果分子与分母都需要展开,这种情形一般会有部分项跟其他加减关系的函数可能有抵消,那就展开到分子分母可比较为止。 多做几道题,你就...

cosx用泰勒公式展开式如上图所示。 1.泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够平滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的...

因为f(x)前面还有个x,所以只需展开到n-1项,再与x相乘就有n项了

泰勒公式展开式: 对于正整数n,若函数 在闭区间上 阶连续可导,且在 上 阶可导。任取 是一定点,则对任意 成立下式: 其中, 表示 的n阶导数,多项式称为函数 在a处的泰勒展开式,剩余的 是泰勒公式的余项,是 的高阶无穷校 麦克劳林公式 是泰...

泰勒公式(Taylor's formula) 形式1:带Peano余项的Taylor公式: 若f(x)在x0处有n阶导数,则存在x0的一个邻域(x0-δ,x0+δ)内任意一点x(δ>0),成立下式: f(x)=f(x0)+f'(x0)/1!*(x-x0)+f''(x0)/2!*(x-x0)^2+…+f(n) (x0)/n!(x-x0)^n+o((x-x0)^n) ...

cosx用泰勒公式展开式如上图所示。 1.泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够平滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的...

虽然两者形式相似,但是是完全不同的概念,这个要回到定义里面。 泰勒公式的最后有个无穷小量,比如e^x=1+x+o(x),这个无穷小量只有在x趋近于x0时才能是无穷小(假设函数在x0附近展开,比如上面的例子是把e^x在0的附近展开)。至于需要展开几项...

当然可以 f(x)=f(x0)+f'(x0)*(x-x0)+f''(x0)/2*(x-x0)^2+f'''(x0)/6*(x-x0)^3+…… 那么f'(x)=1/ 2根号x f''(x)= -1/4 x^(-3/2) 以此类推得到 fn(x)= (-1)^(n-1)[1*3*5**(2n-3)]/2^n *x^(1/2-n) 代入就得到了根号x的泰勒公式展开

网站首页 | 网站地图
All rights reserved Powered by www.tnfh.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com