tnfh.net
当前位置:首页 >> 泰勒公式展开 >>

泰勒公式展开

泰勒公式中常用函数的展开式: 考研常用泰勒展开: sinx=x-1/6x^3+o(x^3)arcsinx=x+1/6x^3+o(x^3)tanx=x+1/3x^3+o(x^3)arctanx=x-1/3x^3+o(x^3)ln(1+x)=x-1/2x^2+o(x^2)cosx=1-1/2x^2+o(x^2) 扩展资料 泰勒公式 公式描述:泰勒公式可以用若干项...

根号下(1+x)泰勒公式展开为 f(x)=1+1/2x-1/8x²+o(x^3) 方法一:根据泰勒公式的表达式 然后对根号(1+x)按泰勒公式进行展开。 方法二:利用常见的函数带佩亚诺余项的泰勒公式 将a=1/2代入,可得其泰勒公式展开式。 扩展资料:1、麦克劳...

根据导数表得:f(x)=sinx,f'(x)=cosx,f''(x)=-sinx,f'''(x)=-cosx,f⑷(x)=sinx…… 于是得出了周期规律。分别算出f(0)=0,f'(0)=1,f''(x)=0,f'''(0)=-1,f⑷=0…… 最后可得:sinx=x-x^3/3!+x^5/5!-x^7/7!+x^9/9!-……(这里就写成无穷级数的形式了。) ...

泰勒公式展开式: 对于正整数n,若函数 在闭区间上 阶连续可导,且在 上 阶可导。任取 是一定点,则对任意 成立下式: 其中, 表示 的n阶导数,多项式称为函数 在a处的泰勒展开式,剩余的 是泰勒公式的余项,是 的高阶无穷校 麦克劳林公式 是泰...

正切函数: =x+x^3/3+2x^5/15+17x^7/315+62x^9/2835+...+[2^(2n)*(2^(2n)-1)*B(2n-1)*x^(2n-1)]/(2n)!+......(|x|

用泰勒展开的方法求极限,展开到多少项是要通过试的,你必须能把最低阶的项精确得到后,才可以停止。 展开的项数少了,会出现前面几项全都消掉的尴尬局面。 为了避免这种情况发生,要多展开几项,直到能把最低阶的项能精确算出来,这时就可以不...

泰勒公式的推导运用了多次柯西中值定理,目的是,要找到f(x)的n阶展开式,并使误差项Rn(x)为(x-x0)^n的高阶无穷小,就要用柯西中值定理证明余项Rn(x)是存在的,而且是可求出来的。在所给出的展开式中,Rn(x)被写在最后一项,把前面的n个含(x-x0)...

因为f(x)前面还有个x,所以只需展开到n-1项,再与x相乘就有n项了

任何函数都有泰勒展式,但不一定能展成泰勒级数。注意上面说了“如果函数f(x)有幂级数展开式(1)。。。。”,有的函数并没有。泰勒展开公式的余项是抽象的,就是说泰勒展开公式是一种拟合。当泰勒余项能用省略号表示的时候(即泰勒余项和无穷级数...

分子或分母是几个单独的函数的乘积时,各自只需替换到最低阶的泰勒公式,如果分子是几个单独的函数相加减时,先确定分母的关于x(x→0时是x,x→a时是x-a)的无穷小的阶数,而分子中的每个单独的函数的泰勒公式的替代要使得x的最高次数与分母的关于x...

网站首页 | 网站地图
All rights reserved Powered by www.tnfh.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com