tnfh.net
当前位置:首页 >> 泰勒展开 >>

泰勒展开

Cos函数的泰勒展开式: 泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够光滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。泰勒公式还...

泰勒中值定理:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和 f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!•(x-x.)^2,+f'''(x.)/3!•(x-x.)^3+……+f(n)(x.)/n!•(...

(1+x)^a的泰勒展开式 1+C(a,1)x+C(a,2)x²+C(a,3)x³+.... =1+ax+a(a-1)/2! x²+a(a-1)(a-2)/3! x³+。。。。。 其中把a=-1代入上面公式即可。 泰勒公式 泰勒公式是将一个在x=x0处具有n阶导数的函数f(x)利用关于(x-x0)的n次多项...

好基友小朱~给的分数太低了!不过还是回答一下:首先e^z的展开式:e^z=1+z+z^2/2!+z^3/3!+...+z^n/n!+...把z=(z/z-1)代入公式即可得到:e^(z/z-1)=1+(z/z-1)+(z/z-1)^2/2!+...+(z/z-1)^n/n!+...

不是的。函数能泰勒展开的必要条件是在展开点附近任意阶可导,充分条件是余项能趋于零。

e^x=1+x+(1/2)x²+(1/6)x³+o(x³) sinx=x-(1/6)x³+o(x³) 上面两式相乘得:(只计算三次之内的) e^xsinx=x+x²+[(1/2)-(1/6)]x³+o(x³) 因此 lim[x→0] [e^xsinx-x(1+x)]/x³ =lim[x→0] [x+x²+(1/3...

x/(1-x)=(x-1+1)/(1-x)=-1+1/(1-x) =-1+1+x+x²+x³+.... =x+x²+x³+..... |x|

泰勒公式展开式: 对于正整数n,若函数 在闭区间上 阶连续可导,且在 上 阶可导。任取 是一定点,则对任意 成立下式: 其中, 表示 的n阶导数,多项式称为函数 在a处的泰勒展开式,剩余的 是泰勒公式的余项,是 的高阶无穷校 麦克劳林公式 是泰...

您好,答案如图所示: 这个展开没有捷径,你只能逐个化简了,小心一点就是 很高兴能回答您的提问,您不用添加任何财富,只要及时采纳就是对我们最好的回报。若提问人还有任何不懂的地方可随时追问,我会尽量解答,祝您学业进步,谢谢。☆⌒_⌒☆ 如...

网站首页 | 网站地图
All rights reserved Powered by www.tnfh.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com