tnfh.net
当前位置:首页 >> 怎么用泰勒展开式展开In(1+x) >>

怎么用泰勒展开式展开In(1+x)

如图:(注意“麦克劳林级数”是“泰勒级数”的特殊形式,是展开位置为0的泰勒级数) 附上泰勒级数展开式公式:

您好,答案如图所示: 这个展开没有捷径,你只能逐个化简了,小心一点就是 很高兴能回答您的提问,您不用添加任何财富,只要及时采纳就是对我们最好的回报。若提问人还有任何不懂的地方可随时追问,我会尽量解答,祝您学业进步,谢谢。☆⌒_⌒☆ 如...

令f(x)=ln(1+x),则 f(x)的k阶导数为fk(x)=(k-1)!(-1)^(k+1)/(1+x)^k; (k-1)的阶乘,乘以-1的k+1次方,除以(1+x)的k次方 f(x)=f(x0)+∑fk(x0)(x-x0)^k/k!(k=1,2,3……) x0可取f(x)定义域内的任意数,根据需要选择.如x0=0,则上式为f(x)在x=0处的泰勒...

ln(1+x) =x-x²/2+x³/3+……+(-1)^(n-1) * x^n/n+...x=0 LS=ln1=0 RS = 0 这里的n是从0开始的正整数,与x应该无关,题中写的只是当x取0时的ln(1+x)的结果。 在数学中,泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足...

参考过程。

(1+x)^a的泰勒展开式1+C(a,1)x+C(a,2)x²+C(a,3)x³+....=1+ax+a(a-1)/2! x²+a(a-1)(a-2)/3! x³+。。。。。其中把a=-1代入上面公式即可。 泰勒公式 是将一个在x=x0处具有n阶导数的函数f(x)利用关于(x-x0)的n次多项式来逼近函...

这是因为对于ln(1+t) 展成关于t的泰勒 级数后,他的收敛范围是-1

这里可以理解成泰勒公式的延展,实际上x是在无穷远处了。

网站首页 | 网站地图
All rights reserved Powered by www.tnfh.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com