tnfh.net
当前位置:首页 >> Bp神经网络 mAtlAB >>

Bp神经网络 mAtlAB

当你用newff的时候,里面有一个参数可以控制层数,比如说: P = [0 1 2 3 4 5 6 7 8 9 10]; T = [0 1 2 3 4 3 2 1 2 3 4]; net = newff(P,T,5); %这样表示有1个隐藏层,里面那个5表示神经元的个数 net = newff(P,T,[5,10]); %这样表示有2个隐藏...

给你一个我的程序,如果自己做不了可以联系我:1526208341 动量梯度下降算法训练 BP 网络 训练样本定义如下: 输入矢量为 p =[-1 -2 3 1 -1 1 5 -3] 目标矢量为 t = [-1 -1 1 1] close all clear echo on clc % NEWFF——生成一个新的前向神经网络...

你用的是matlab的神经网络工具箱吧。那是因为权值和阈值每次都是随机初始化的,所以结果就会不一样, 你可以把随机种子固定,即在代码前面加上setdemorandstream(pi); 这样每次训练出来的结果都是一样的了。 看来楼主是刚开始学习神经网络的,推...

fscanf函数我不太了解,一般数值可以存在xls或csv文档中,由txt文件转到csv文件极其简单。然后由csvread或xlsread函数读取,直接可以存到矩阵中。 一个样本是矩阵的一列,而不是行。(当然归一化是以行为单位的)

newff()这个函数是建立一个神经网络的函数,其中括号里面的参数含义依次是:输入数据和输出数据的范围,隐含层神经元个数,传递函数设置像BP网编程这块,需要先给出输入和期望输出的数据矩阵,然后newff函数建立网络,然后train函数训练网络,在...

额。。。 一种启发式的改进就是,为学习速率选用自适应值,它依赖于连续迭代步骤中的误差函数值。 自适应调整学习速率的梯度下降算法,在训练的过程中,力图使算法稳定,同时又使学习的步长尽量地大,学习速率则是根据局部误差曲面作出相应的调整。...

net=newelm(minmax(inputn),[5,1],{'logsig','tansig'},'trainlm'); 这是老版用法,建议你用新版用法。 net=newelm(P,T,S1); 输出层也用tansig吗,这可能会有负数。 Elman神经网络是一种带有反馈的两层BP网络结构,其反馈连接是从隐含层的输出到...

clear; clc; shuru=[1305554.51 662938.89 877648.23 955254.91 1182286.47 605157.99 769639.28 1000855.67 1567936.19 712892.06 995621.47 1210817.23 1824825.89 805095.78 1357303.95 1913573.98 2221913.29 988940.37 1520540.25; -535933...

输入量必须有才能预测,只是输入量要比原来的往后延长一点,如原来的t=1:5,可改为t1=3:7,这样,再仿真,就向后预测了2个点。3入1出的类似,要有3个输入。

给你个例子如下, net=newff(inputn,outputn,[8,4],{'tansig','purelin'},'trainscg');%初始化网络结构 %网络参数配置(迭代次数、学习率、目标) net.trainParam.epochs=3000; net.trainParam.lr=0.08; net.trainParam.goal=0.05; net.divideFc...

网站首页 | 网站地图
All rights reserved Powered by www.tnfh.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com